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Abstract

A mesh-free method is presented to analyze the static deflection and natural frequencies of thin and
thick laminated composite plates using high order shear deformation theory. In the present method, the
problem domain is represented by a set of properly scattered nodes and no element conformability
is required. Moving least-squares method is applied to construct the shape functions. Variational principle
is used to derive the discrete system equations based on the third order shear deformation theory (TSDT)
of Reddy. Essential boundary conditions are efficiently implemented by a penalty technique for both the
static deflection and natural frequency analysis. Several examples are solved to demonstrate the
convergence, accuracy and validity of the proposed method. The present solutions are verified with those
available values by analytical as well as finite element method. The results from classical plate theory and
first order shear deformation theory are also computed and compared with those of TSDT. The effects of
the material coefficients, side-to-thickness ratio, nodal distribution and shear correction factor are
discussed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

With the wide application of composite laminates in industries, especially in aerospace,
automotive, and underwater structures, static and dynamic analysis of laminates becomes an
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important task. Numerical methods such as finite element method (FEM) have been successfully
applied to analyze laminate problems. However, it is not easy to conveniently construct
conformable plate elements (C1 consistency) of high order as required for thin plate, in which the
element connectivity is required to form the system equations.
In recent years, a new type of method called mesh-free or meshless method has been developed

[1–5], in which the problem domain is discretized by a set of scattered nodes and element
connectivity among the nodes is not required. Its theories and numerical practice have been
collected in a monograph [6]. Moving least-squares (MLS) method is now widely used to
construct mesh-free shape functions for approximation. It is of at least C1 continuity and thus
attractive for plates and shells [6,7]. If quartic spline weight function is adopted, the smooth
moments can also be obtained. Element free Galerkin (EFG) method is a well-developed method
employing MLS approximations and has been successfully applied to elasticity, crack growth, and
other discontinuity problems [3,8,9]. EFG method has been used for modal analysis of Euler–
Bernoulli beams and Kirchhoff plates [10]. In this work, the essential boundary conditions
are enforced directly at each constraint boundary point. Krysl and Belytschko have extended
EFG to static analysis of thin plate and shells [11,12]. In their work, the essential boundary
conditions are enforced by a method of Lagrange multipliers. In Ref. [13], the dynamic response
of beams and thin plates are analyzed and penalty functions are applied to impose boundary
conditions. A parametric study on the adopted weight function was carried out to determine the
best values for these parameters. The EFG method has also been formulated for static and
dynamic analysis [14], buckling analysis of thin plate of complicated shape [15]. In these papers,
the essential boundary conditions are imposed using orthogonal transform techniques. The
deflection of thin laminates based on classical plate theory was also studied by Chen et al. using
EFG method [16]. Since the in-plane deformations are not considered, this method is only limited
to symmetric thin laminates.
In EFG method, the shape functions constructed by MLS approximation do not have the

property of delta functions. Hence the essential boundary conditions cannot be imposed as
conveniently as the conventional FEM method. Use of Lagrange multipliers introduces unknown
variables and zero diagonal terms in the discrete algebraic equations. Therefore, it becomes more
complex and less efficient to solve the discrete system equations. For the analysis of free vibration
of thin plates, the essential boundary conditions are enforced using orthogonal transform
technique by Liu and Chen [14]. In this technique, the transformation contains matrix
multiplications of stiffness and mass matrices, which substantially increase the amount of
computational work especially for large matrices. In the present formulation, the penalty method
is used to impose the essential boundary conditions, which is applicable not only to the static
deflection analysis, but also to the free vibration analysis. The discrete system equation so derived
has a simple form as that in conventional FEM. The method is more efficient than orthogonal
transform method.
The classical laminated plate theory (CPT) and first order shear deformation theory (FSDT) are

commonly used theory for the analysis of laminated composite plates. However, as the transverse
shear deformation is omitted, CPT can only give good results for thin plates. For FSDT, the shear
correction factor is needed and it depends on the material coefficients, geometry, stacking scheme,
and boundary conditions, which cannot be easily determined for practical problems. In this paper,
the composite laminates are formulated using EFG method based on third order shear
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deformation theory (TSDT) of Reddy. The theory can represent the kinematics better and yield
more accurate inter-laminar stress distributions. The introduction of cubic variation of the
displacement also avoids the need for shear correction coefficients.
To demonstrate the validity of present formulations, several numerical examples are presented

for both the static and free vibration analyses of composite laminates with different boundary
conditions. The problem domain may be discretized using regularly distributed nodes and
randomly scattered nodes. All the three theories are employed and coded for the simulations. The
present solutions are also compared with analytical ones and those by FEM method available
from literature.

2. Approximation of displacement by MLS method

MLS method is now widely used in construction of shape functions for the mesh-free method
[3,8]. Its general formulation is briefly given here. In this method the general displacements of a
point of interest x; say uðxÞ; are approximated with an displacement approximation function uhðxÞ
in the following form:

uhðxÞ ¼
Xm

j¼1

pjðxÞajðxÞ � pTðxÞaðxÞ; ð1Þ

where pðxÞ is a complete basis of monomials of the lowest order of m: The basis adopted in the
present paper is

pTðxÞ ¼ f1; x; y; x2;xy; y2g; m ¼ 6: ð2Þ

The coefficients in aðxÞ in Eq. (1) are functions of x; which can be determined by minimizing a
functional of weighted residual

J ¼
Xn

I¼1

wðx� xI Þ½pTðxI ÞaðxÞ � uI 	2; ð3Þ

where n is the number of nodes in the neighborhood of x; which is also called the influence domain
of x: wðx� xI Þ is a weight function. uI is the nodal parameter at node I : At an arbitrary point x;
aðxÞ is chosen by

@J

@a
¼ 0 ð4Þ

which results in the following equation system:

AðxÞaðxÞ ¼ BðxÞu; ð5Þ

where the symmetric matrix A is called weighted moment matrix and B is non-symmetric. They
are in the forms of

AðxÞ ¼
Xn

I¼1

wðx� xI ÞpðxI ÞpTðxI Þ; ð6Þ
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BðxÞ ¼ ½wðx� xI Þpðx1Þ;y;wðx� xnÞpðxnÞ	: ð7Þ

A well-conditioned AðxÞ is assured if all the nodes in influence domain are normalized
to a local co-ordinate system ðxI ; yI Þ using x0 ¼ x � xI ; y0 ¼ y � yI ; where ðx0; y0Þ and (x; y)
are positions of a node expressed in a local and the original global co-ordinate systems,
respectively, and ðxI ; yI Þ represents the position of point I where the approximation function is
evaluated.
Substituting Eq. (5) into Eq. (1), leads to

uhðxÞ ¼
Xn

I¼1

pTðxÞA�1ðxÞBI ðxÞuI ¼
Xn

I¼1

fI ðxÞuI ; ð8Þ

where BI is the Ith element of matrix B and fI is the MLS shape function given by

fI ðxÞ ¼ pTðxÞA�1ðxÞBI ðxÞ: ð9Þ

Let UðxÞ ¼ ½f1ðxÞ;y;fnðxÞ	 and cðxÞ ¼ A�1ðxÞpðxÞ; we have

UðxÞ ¼ cTðxÞBðxÞ: ð10Þ

The partial derivatives of cðxÞ can be obtained by

Ac;i ¼ P;i � A;ic; ð11Þ

Ac;ij ¼ P;ij � ðA;ic; j þ A; jc;i þ A;ijcÞ; ð12Þ

where (i; j) denote the co-ordinate (x; y). The partial derivatives of shape function U can be
obtained as follows:

U;i ¼ cT;iBþ cTB;i; ð13Þ

U;ij ¼ cT;ijBþ cT;iB; j þ cT; jB;i þ cTB;ij : ð14Þ

The shape of the influence domain of x can be square or circular. In this paper, square domains
are used. The weight functions play an important role in MLS approximation. Several weight
functions are available in literature [6]. Here the quartic spline is employed which satisfies the
continuity of the weight function as well as its first and second derivatives. Another merit of this
function is that no parameters are needed to tune in order to obtain good solutions. The spline can
be expressed as

wðx� xI Þ � wð %dÞ ¼
1� 6 %d2 þ 8 %d3 � 3 %d4 for 0p %dp1;

0 for %d > 1:

(
ð15Þ

For the rectangular influence domain in 2-D problems, we have

wð %dÞ ¼ wðdxÞwðdyÞ ¼ wxwy; ð16Þ

dx ¼
jjx � xI jj

dmax x

; ð17Þ
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dy ¼
jjy � yI jj
dmax y

; ð18Þ

where dmax x and dmax y are the half-length of the influence domain in x and y direction.

3. Governing equations

3.1. A third order plate theory

Consider a laminated plate of a 
 b 
 h shown in Fig. 1. The displacements of the plate in the
ðx; y; zÞ directions are denoted as ðu; v;wÞ; respectively. Based on the third order deformation
theory of Reddy [17–19], the displacement field within one layer is assumed as

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zjxðx; y; tÞ � az3jx � az3
@w0

@x
;

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zjyðx; y; tÞ � az3jy � az3
@w0

@y
;

wðx; y; z; tÞ ¼ w0ðx; y; tÞ ð19aÞ
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Fig. 1. A typical laminated plate and its co-ordinate system.
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or in matrix form

u

v

w

8><
>:

9>=
>; ¼

1 0 �az3
@

@x
z � az3 0

0 1 �az3
@

@y
0 z � az3

0 0 1 0 0

2
666664

3
777775

u0

v0

w0

jx

jy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; or u ¼ Hu0; ð19bÞ

where a ¼ 4=ð3h2Þ; h is the thickness of the laminate. ðu0; v0;w0Þ are the displacements of the point
on the neutral-plane in the ðx; y; zÞ direction, respectively. (jx;jyÞ are the rotations about the
ðy;�xÞ axis. Note that, if a ¼ 0; the displacement field of the first order deformation theory
(FSDT) can be obtained. Furthermore, if we let a ¼ 0 and jx ¼ �@w=@x; jy ¼ �@w=@y; the
displacement field of the classical plate theory (CPT) can be recovered.
The linear strains are as follows:

exx

eyy

exy

exz

eyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

@

@x
0 �az3

@2

@x2
ðz � az3Þ

@

@x
0

0
@

@y
�az3

@2

@y2
0 ðz � az3Þ

@

@y

@

@y

@

@x
�zaz3

@2

@x@y
ðz � az3Þ

@

@y
ðz � az3Þ

@

@x

0 0 ðz � bz3Þ
@

@x
ð1� bz2Þ 0

0 0 ðz � bz3Þ
@

@y
0 ð1� bz2Þ

2
66666666666666664

3
77777777777777775

u0

v0

w0

jx

jy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

or ep ¼ Lu0; ð20Þ

where b ¼ 3a:
As most laminates are typically thin, a plane state of stress can be assumed. For an orthotropic

lamina, the strain–stress relations can be denoted in the form of

rp ¼ Dep; D ¼

%Q11 %Q12 %Q16 0 0

%Q12 %Q22 %Q26 0 0

%Q16 %Q26 %Q66 0 0

0 0 0 %Q44 %Q45

0 0 0 %Q45 %Q55

2
6666664

3
7777775

ð21Þ

in the system co-ordinate of the whole plate and %Qij’s are derived as

%Q11 ¼ Q11 cos
4 yþ 2ðQ12 þ 2Q66Þ sin

2 y cos2yþ Q22 sin
4 y;

%Q12 ¼ ðQ11 þ Q22 � 4Q66Þ sin
2 y cos2 yþ Q12ðsin

4 yþ cos4 yÞ;

%Q16 ¼ ðQ11 � Q12 � 2Q66Þ sin y cos3yþ ðQ12 � Q22 þ 2Q66Þ sin
3 y cos y;

%Q22 ¼ Q11 sin
4 yþ 2ðQ12 þ 2Q66Þ sin

2 y cos2 yþ Q22 cos
4 y;
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%Q26 ¼ ðQ11 � Q12 � 2Q66Þ sin
3 y cos yþ ðQ12 � Q22 þ 2Q66Þ sin y cos3 y;

%Q66 ¼ ðQ11 þ Q22 � 2Q12 � 2Q66Þ sin
2 y cos2 yþ Q66ðsin

4 yþ cos4 yÞ;

%Q44 ¼ Q44 cos
2 yþ Q55 sin

2 y;
%Q45 ¼ ðQ55 � Q44Þ cos y sin y;

%Q55 ¼ Q55 cos
2 yþ Q44 sin

2 y: ð22Þ

All the Qij’s are defined in the material co-ordinate of the lamina, where y is the angle of the
fiber orientation of the ply, i.e., the ply angle. Qij’s are given by

Q11 ¼
E1

1� n12n21
; Q12 ¼

n12E2

1� n12n21
; Q22 ¼

E2

1� n12n21
;

Q66 ¼ G12; Q44 ¼ G13; Q55 ¼ G23; n21E1 ¼ n12E2 ð23Þ

in which ðEi;Gij; vijÞ are Young’s modulus, shear modulus, and Poisson’s ratio, respectively.
Subscript 1 denotes the principle material (or fiber) direction.

3.2. Variational form of system equations

The boundary conditions of a laminated plate can be denoted as follows:

s � n ¼ %t on Gs; *u ¼ %u on Gu; ð24Þ

where *u ¼ Ru0: For simply supported boundary SS1 (see Fig. 2),

R ¼ f 0 1 1 0 1 gT at x ¼ 7a=2;

R ¼ f 1 0 1 1 0 gT at y ¼ 7b=2: ð25Þ

For fully clamped boundary

R ¼ f 0 1 1þ @=@x 0 1 gT at x ¼ 7a=2;

R ¼ f 1 0 1þ @=@y 1 0 gT at y ¼ 7b=2: ð26Þ

For boundary condition at free edge, the R is a zero vector with size (5
 1).
The dynamic equations of a laminated plate can be derived by Hamilton variational principle

d
Z t2

t1

½T � U þ W 	 dt ¼ 0; ð27Þ

where (T ; U ; W ) are the kinetic energy, strain energy and the work done by the external applied
force, respectively.
As the Kronecker delta function property fI ðxJÞ ¼ dIJ is not satisfied at each node by the MLS

shape function in Eq. (9), the essential boundary conditions cannot be imposed directly as in
FEM. In this paper, a penalty method is applied to enforce the essential boundary conditions.
This technique is applicable for both the static deflection analysis and the free vibration analysis
of laminated plate. Hence, after expanding Eq. (27), additional term appears in the variational
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form of the equilibrium equationZ
S

deTp : rp dS þ
Z

V

duT � r.u dV �
Z

V

duT � b dV �
Z
Gs

duT � %t dG

� d
Z
Gu

ð*u� %uÞT � a � ð*u� %uÞ dG ¼ 0; ð28Þ

where ðrp; epÞ are the pseudo-stress and pseudo-strain. They are related by rp ¼ Dep for each
lamina. b is a body force vector, r is the density the lamina, and a is a diagonal matrix of penalty
coefficients whose non-zero elements are usually very large numbers among 1
 10621
 1015:
The value of 1
 1010 is often used in the following examples.
Substituting the known variables into Eq. (28), it can be rewritten asZ

S

duT0L
TDLu0 dS þ

Z
V

rduT0H
TH.u0 dV �

Z
V

duT0Hb dV �
Z
Gs

duT0H%t dG

� d
Z
Gu

1

2
ðRu0 � %uÞTaðRu0 � %uÞ dG ¼ 0: ð29Þ

3.3. Approximation of field variables

Using the MLS method, the laminate is represented by a set of nodes scattered in the domain of
the plate. The field variables should be the in-plane extensions, transverse deflection and the

ARTICLE IN PRESS

b
O

a

y

x

At y=± b/2,

000 === xwu φ 

At x=± a/2,

000 === ywv φ 

SS-1

O

a

y

x

At y=± b/2,

000 === xwv φ

At x=± a/2,

000 === ywu φ 

SS-2

Fig. 2. Simple supported boundary conditions for (a) cross-ply laminates (SS1) and (b) angle-ply laminates (SS2).
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rotations at all the nodes, i.e. ðu0; v0;w0;jx;jyÞ:

u0 ¼
Xn

I¼1

fuI uI ; v0 ¼
Xn

I¼1

fvI vI ; w0 ¼
Xn

I¼1

fwI wI ;

jx ¼
Xn

I¼1

fxIjxI ; jy ¼
Xn

I¼1

fyIjyI ; ð30aÞ

where n is the number of nodes in the support domain of a point of interest x and f is the MLS
shape function discussed above. The foregoing equation can be rewritten in matrix form

u0

v0

w0

jx

jy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼
Xn

I¼1

fuI 0 0 0 0

0 fvI 0 0 0

0 0 fwI 0 0

0 0 0 fxI 0

0 0 0 0 fyI

2
6666664

3
7777775

uI

vI

wI

jxI

jyI

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

or u0 ¼
Xn

I¼1

UIu0I : ð30bÞ

In our formulation, it is assumed that fuI ; fvI ; fwI ; fxI and fyI are different shape
functions and may be independent of each other.

3.4. Discrete system equations

Substituting Eq. (30) into the variational form (29), the final discrete system equations can be
obtained as follows:

M.u0 þ ðKþ *KÞu0 ¼ F; ð31Þ

where the mass matrix, stiffness matrices and vector F are formed by assembling the matrices and
vectors associated with the nodes I and J; as given by

KIJ ¼
Z

S

XNL

i¼1

Z
zi

BT
IiDiBJi dz

 !
dS; ð32Þ

*KIJ ¼
Z

S

XNL

i¼1

Z
zi

*B
T

Iia *BJi dz

 !
dS; ð33Þ

MIJ ¼
Z

S

XNL

i¼1

Z
zi

riN
T
IiNJi dz

 !
dS; ð34Þ

FI ¼
Z

V

FT
I b dV þ

Z
Gs

FT
I
%t dG; ð35Þ
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BIi ¼

fuI ;x 0 �az3fwI ;xx ðz � az3ÞfxI ;x 0

0 fvI ;y �az3fwwI ;yy 0 ðz � az3ÞfyI ;y

fuI ;y fvI ;x �2az3fwI ;xy ðz � az3ÞfxI ;y ðz � az3ÞfyI ;x

0 0 ð1� bz2ÞfwI ;x ð1� abz2ÞfxI 0

0 0 ð1� bz2ÞfwI ;y 0 ð1� bz2ÞfyI

2
66666664

3
77777775
; ð36Þ

NIi ¼

fuI 0 �az3fwI ;x ðz � az3ÞfxI 0

0 fvI �az3fwI ;y 0 ðz � az3ÞfyI

0 0 fwI 0 0

2
64

3
75: ð37Þ

In Eqs. (32)–(34), NL denotes the number of layers of the laminated plate. As each layer may
have different ply angles, material coefficients and/or locations to the thickness direction, the
stiffness and mass matrix should be calculated at each layer and then assemble to system matrix
together. According to the first equation of (25), *BIi has the form of

*BIi ¼ f 0 fvI fwI 0 fyI g
T: ð38Þ

For other boundary conditions in (25) and (26), *BIi can be obtained in the same way.
Consider now the laminates is undergoing a harmonic vibration. The displacements u0 can be

expressed in the form

u0 ¼ Ueiot; ð39Þ

where i is the imaginary unit, o is the angular frequency, and U is the amplitude of the vibration.
Substitution the foregoing equation into Eq. (31) leads to the following eigenvalue equation:

½ðKþ *KÞ � o2M	U ¼ 0; ð40Þ

where U is an eigenvector in the form of

U ¼ fU1 U2 y Ung
T: ð41Þ

As the penalty technique is used to impose the essential boundary conditions, which introduces
an additional matrix *K in Eq. (40), the eigenvalue equation can be conveniently analyzed using
standard routines of eigenvalue solvers.

4. Numerical examples

To examine the efficiency and validity of the present formulations, static deflection and natural
frequency analysis are studied. For the purpose of comparison, programs based on CPT and
FSDT are also developed employing the MLS approximation method. The following geometric
parameters, lamina properties, typical of graphite-epoxy materials, are used in the following
numerical examples that are presented here:

Length: a=b=10.0 (Square laminate).
Material 1: E1 ¼ 25E2; G12 ¼ G13 ¼ 0:5E2; G23 ¼ 0:2E2; v12 ¼ 0:25; r ¼ 1:
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Material 2: E1 ¼ 40E2; G12 ¼ G13 ¼ 0:6E2; G23 ¼ 0:5E2; v12 ¼ 0:25; r ¼ 1:
Material 3: E1 ¼ 2:45E2; G12 ¼ G13 ¼ 0:48E2; G23 ¼ 0:48E2; v12 ¼ 0:23; r ¼ 8000:

Material 1 is used for static deflection analysis and Materials 2 and 3 are for natural frequency
analysis. Without specification, the shear correction coefficient K for the first order shear theory is
taken to be 5/6. For the static deflection analysis of laminated plates, a sinusoidal distribution of
the transverse load is defined as

qðx; yÞ ¼ q0 cos
px

a
sin

p
b

y þ
b

2

� �
: ð42Þ

The geometry and co-ordinate system are shown in Fig. 1. Two kinds of simply supported
boundary conditions are given in Fig. 2. SS1 is applied to cross-ply laminates and SS2 to angle-ply
ones. In all cases, square influence domain is used with a side length 7.8 times of uniform or
average nodal spacing. Integration of the weak form is carried out with a 4
 4G quadrature
order over each cell.

4.1. Static deflections analysis

Several cases are studied here. If not specified otherwise, regular rectangle background
meshes (20
 20) are used for integration of stiffness matrix or load vectors and regularly
distributed field nodes (21
 21) are used for field variable approximation, which is shown in
Fig. 3a. The results for deflections are presented using the following non-dimensional form for all
cases:

%w ¼ w0ð0; 0Þ
h3E2

b4q0

 102: ð43Þ

In order to demonstrate the convergence of the present method, the deflection of a cross-ply
square laminate with three layers (0/90/0) under the sinusoidally distributed transverse load is
firstly analyzed with simply supported boundary conditions. Six kinds of nodal density are used
here and the results are shown in Table 1 together with the FEM solutions of Reddy [19]. It can be
seen that good convergence has been achieved. When more than 10
 10 nodes are used, the final
result is very stable and accurate. Even very sparse nodes can give reasonable results.
The next case is a cross-ply square laminate (0/90/90/0) with four layers of equal thickness and

subjected to the sinusoidally distributed transverse load. Four kinds of side-to-thickness ratios are
employed for simulation, ranging from 4 to 100. The results are listed in Table 2. The solutions by
FEM of Reddy are also given in the table together with those by the 3-D elasticity theory (ELS)
[20]. It can be seen that the third order theory gives more accurate results when compared to the
first order shear deformation theory. The present method gives solutions very agreeable to those
of the FEM method. The differences between ELS and FSDT results get larger when the ratio of
h=a increases, whereas for TSDT, the differences remain very little. That means the present
method is accurate not only for thin laminates but also for thick ones. Comparing the results of
the three theories, CPT always underpredicts the static deflection, especially for thicker laminated
plates when the ratio of h=a increases, whose solutions do not change with the side-to-thickness
ratios. FSDT results are much closer to TSDT especially for thick plate.
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A cross-ply square laminate with three layers (0/90/0) is examined using different side-to-
thickness ratios and shear correction factors for FSDT. From Table 3, it can be seen that the
present solutions compare well with those of Reddy for CPT and TSDT. For the first order
theory, the shear correction factor K depends on the lamina properties, geometry, boundary
conditions and the stacking sequence, etc. As it has great influence on final results, four factors are
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(a)

(b)

Fig. 3. Nodal distribution for the square laminate: (a) 21
 21 regular nodes and (b) 441 irregular nodes.
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adopted here for the deflection analysis. It can be seen that when K is equal to 3
4
; the final results

are quite closer to the TSDT results than other values for this case.
If the laminate is disctetized by 441 irregularly distributed nodes as shown in Fig. 3b, we again

perform the maximum deflection analyses of the simply supported square laminate. The solutions
are listed in Table 4. Note that, for FSDT, K ¼ 3

4
is used for simulations. The results are quite
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Table 2

Non-dimensionalized maximum deflections %w in simply supported symmetric cross-ply (0/90/90/0) square laminates

under sinusoidally distributed transverse load

a/h

4 10 20 100

ELS Pagano [20] 1.954 0.743 0.517 0.438

TSDT Reddy [19] 1.894 0.715 0.506 0.434

Present 1.8930 0.7147 0.5060 0.4342

FSDT Reddy [19] 1.710 0.663 0.491 0.434

Present 1.731 0.6708 0.4950 0.4340

CPT Reddy [19] 0.431

Present 0.4302

Table 3

Non-dimensionalized maximum deflections %w in simply supported symmetric cross-ply (0/90/0) square laminates under

sinusoidally distributed transverse load (regularly distributed nodes)

a=h Source TSDT FSDT CPT

K ¼ 1 K ¼ 5=6 K ¼ 3=4 K ¼ 1=2

4 Reddy [19] 1.9218 1.5681 1.7758 1.9122 2.5770 0.4313

Present 1.9210 1.5980 1.8100 1.9500 2.6270 0.4302

10 Reddy [19] 0.7125 0.6306 0.6693 0.6949 0.8210 0.4313

Present 0.7124 0.6384 0.6782 0.7044 0.8336 0.4302

100 Reddy [19] 0.4342 0.4333 0.4337 0.4340 0.4353 0.4313

Present 0.4341 0.4336 0.4339 0.4341 0.4357 0.4302

Table 1

Non-dimensionalized maximum deflections %w in simply supported symmetric cross-ply (0/90/0) square laminates under

sinusoidally distributed transverse load using different nodal densities (a=h ¼ 10)

Theory %w (present method) %w [19]

8
 8 10
 10 12
 12 15
 15 18
 18 20
 20

CPT 0.4297 0.4299 0.4303 0.4305 0.4307 0.4308 0.4313

TSDT 0.7117 0.7121 0.7124 0.7124 0.7124 0.7125 0.7125
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close to those using regular nodes as well as the FEM solutions. Similar conclusions can also be
reached for other cases.
The foregoing cases carry out the calculations for symmetric laminates. For antisymmetric

laminates, there exists coupling between bending and extension, which complicates the simulation.
Therefore, a two-layer antisymmetric cross-ply plate is considered with different boundary
conditions. The notation, SSCC, for example, refers to simply supported boundary conditions
SS1 used on the edges x ¼ 7a=2; while the other two edges (i.e., y ¼ 7b=2), are fully clamped.
TSDT and CPT results are given together in Table 5. It can be seen that the present method also
gives reasonable results compared to the exact and FEM solutions.

4.2. Natural frequency analysis

Natural frequency analysis is carried out for thin/thick laminates stacked with
different schemes. Without specification, regular rectangle background meshes (12
 12)
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Table 4

Non-dimensionalized maximum deflections %w in simply supported symmetric cross-ply (0/90/0) square laminates under

sinusoidally distributed transverse load (irregularly distributed nodes)

a=h Source TSDT FSDT (K ¼ 3=4) CPT

4 Reddy [19] 1.9218 1.9122 0.4313

Present 1.9270 1.9496 0.4333

10 Reddy [19] 0.7125 0.6949 0.4313

Present 0.7167 0.7045 0.4333

100 Reddy [19] 0.4342 0.4340 0.4313

Present 0.4351 0.4343 0.4333

Table 5

Non-dimensionalized center deflections %w of antisymmetric cross-ply (0/90) square plates with various boundary

conditions (two layers)

b=h Theory Source SSSS SSCC SSFF

5 TSDT Exact (Reddy [19]) 1.667 1.088 2.624

FEM (Reddy [19]) 1.667 1.068 2.647

Present 1.636 1.058 2.584

10 TSDT Exact (Reddy [19]) 1.216 0.617 1.992

FEM (Reddy [19]) 1.214 0.605 2.002

Present 1.205 0.596 1.954

5/10 CPT Exact (Reddy [19]) 1.064 0.429 1.777

FEM (Reddy [19]) 1.043 0.417 1.786

Present 1.061 0.424 1.771
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are used for integration and regularly distributed field nodes (13
 13) are used for field
approximation.
First, a single-layer square thin plate with free boundaries is studied to demonstrate the

convergence of the method. The following parameters are adopted: length a ¼ b ¼ 10:0m;
thickness h ¼ 0:05m; Young’s modulus E=200
 109N/m2; the Poisson ratio v ¼ 0:3; and
mass density r ¼ 8000 kg/m3. The same model was analyzed by Abbassian et al. [21] and
its solutions are listed in Table 6. In our computations, the domain is discretized using five
kinds of nodal density. Both CPT and TSDT are employed for the natural frequency analysis.
The frequency coefficients in this case are denoted as O ¼ ðo2rha4=D0Þ

1=4; where D0 ¼
E1h

3=½12ð1� v12v21Þ	: The first three frequencies corresponding to the rigid displacements are
zero and thus are not listed in Table 6. The table again shows good convergence and agreement
compared with the exact solutions. Even the high order theory of TSDT is valid and performs well
for the thin plate.
Fundamental frequencies of four-layer simply supported cross-ply laminates (0/90/90/0) are

then calculated based on theories CPT, FSDT and TSDT as shown in Table 7. The table contains
the non-dimensionalized fundamental frequencies, %o ¼ o11ða2=hÞ

ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
; of laminates as

functions of modulus ratio E1=E2 and two kinds of side-to-thickness ratio are used for each of
them. The other material coefficients are same as material 2. It can be seen that the primary
frequency increases with the ratios of a=h and E1=E2: The present results are in a good agreement
with those of Reddy, especially for CLP and TSDT theories. The solutions of TSDT match well
with those of the 3-D elasticity solutions by Noor [22]. Comparing the solutions of the three
theories, CPT always overpredicts natural frequencies for thick laminates. The solutions by FSDT
are quite close to those of TSDT and ELS when shear correction factor K ¼ 5

6
is used in this case.

In the next case, two-layer antisymmetric cross-ply square plates (0/90) are examined again with
different boundary conditions and side-to-thickness ratios. Material 2 is used here. Table 8
contains both the Levy and finite element results. The present solutions are again in good
agreement with the exact ones and FEM results by Reddy.
In the above cases, only cross-ply laminates are studied in which the material orientation for

adjacent layers is 0� and 90�. In the following cases, natural frequencies for angle-ply laminates
are examined. The laminates are made of Material 3, typical of thin plate (h=a ¼ 0:006). The
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Table 6

Natural frequency coefficients O of a lateral free vibration of a free square plate

Theory Mode Present method Analytical solution [21]

8
 8 10
 10 13
 13 17
 17 19
 19

CPT 4 3.684 3.678 3.675 3.673 3.672 3.670

5 4.467 4.456 4.447 4.440 4.437 4.427

6 4.970 4.962 4.954 4.944 4.941 4.926

TSDT 4 3.686 3.674 3.673 3.671 3.670 3.670

5 4.594 4.513 4.460 4.437 4.433 4.427

6 5.236 5.082 4.984 4.944 4.937 4.926
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dimensionless frequency parameters are expressed by

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rho2a4

D0

s
; ð44Þ

where D0 is same as before.
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Table 8

Effect of side-to-thickness ratio on the dimensionless frequencies %o of antisymmetric cross-ply (0/90) square plates with

various boundary conditions (two layers)

b=h Theory Source SSSS SSCC SSFF

5 TSDT Exact (Reddy [19]) 9.087 11.890 6.128

FEM (Reddy [19]) 9.103 12.053 6.172

Present 8.949 11.992 6.129

CPT Exact (Reddy [19]) 10.721 17.741 7.124

FEM (Reddy [19]) 11.192 18.694 7.150

Present 10.746 18.801 7.146

10 TSDT Exact (Reddy [19]) 10.568 15.709 6.943

FEM (Reddy [19]) 10.594 15.914 6.915

Present 10.423 15.146 6.946

CPT Exact (Reddy [19]) 11.154 18.543 7.267

FEM (Reddy [19]) 11.383 19.053 7.262

Present 11.180 18.010 7.291

Table 7

Non-dimensionalized frequencies %o in simply supported (0/90/90/0) cross-ply laminates as functions of modulus ratio

E1=E2 a=h ELS [22] TSDT FSDT CPT

Reddy [19] Present Reddy [19] Present Reddy [19] Present

3 5 6.618 6.560 6.555 6.570 6.360 7.299 7.295

10 — 7.247 7.242 7.243 7.157 7.475 7.470

10 5 8.210 8.272 8.271 8.298 8.080 10.316 10.321

10 — 9.853 9.842 9.841 9.670 10.563 10.569

20 5 9.560 9.526 9.526 9.567 9.440 13.511 13.522

10 — 12.383 12.218 12.218 12.115 13.835 13.846

30 5 10.272 10.272 10.270 10.326 10.238 16.084 16.098

10 — 13.892 14.157 13.864 13.799 16.470 16.485

40 5 10. 752 10.787 10.789 10.854 10.789 18.299 18.316

10 — 15.143 15.145 15.107 15.068 18.738 18.755
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Table 9

Natural frequencies parameters b of laminated square plates (BC: SSSS) (h ¼ 0:06; h=a ¼ 0:006)

Ply angle Source Modes

1 2 3 4 5 6

(0�, 0�, 0�) Present: TSDT 15.22 33.76 44.79 61.11 66.76 91.69

Present: CPT 15.17 33.32 44.51 60.78 64.79 90.42

Chow [23] 15.19 33.31 44.52 60.79 64.55 90.31

Leissa [24] 15.19 33.30 44.42 60.78 64.53 90.29

(15�, �15�, 15�) Present: TSDT 15.45 34.54 44.25 61.36 68.68 92.99

Present: CPT 15.40 34.12 43.96 60.91 66.92 91.76

Chow [23] 15.37 34.03 43.93 60.80 66.56 91.40

Leissa [24] 15.43 34.09 43.80 60.85 66.67 91.40

(30�, �30�, 30�) Present: TSDT 15.92 36.28 43.00 62.05 73.55 87.37

Present: CPT 15.87 35.92 42.70 61.53 71.10 86.31

Chow [23] 15.86 35.77 42.48 61.27 71.41 85.67

Leissa [24] 15.90 35.86 42.62 61.45 71.71 85.72

(45�, �45�, 45�) Present: TSDT 16.15 37.33 42.20 62.45 78.96 81.55

Present: CPT 16.10 37.00 41.89 61.93 77.99 80.11

Chow [23] 16.08 36.83 41.67 61.65 76.76 79.74

Leissa [24] 16.14 36.93 41.81 61.85 77.04 80.00

Table 10

Natural frequencies parameters b of laminated square plates (BC: CCCC) (h ¼ 0:06; h=a ¼ 0:006)

Ply angle Source Modes

1 2 3 4 5 6

(0�, 0�, 0�) Present: TSDT 30.02 54.68 70.41 89.36 92.58 123.6

Present: CPT 29.27 51.21 67.94 86.25 87.97 119.3

Chow [23] 29.13 50.82 67.29 85.67 87.14 118.6

(15�, �15�, 15�) Present: TSDT 29.85 55.25 69.14 88.53 94.92 124.3

Present: CPT 29.07 51.83 66.55 85.17 90.56 120.0

Chow [23] 28.92 51.43 65.92 84.55 89.76 119.3

(30�, �30�, 30�) Present: TSDT 29.51 56.84 66.17 87.83 100.5 118.9

Present: CPT 28.69 53.57 63.26 84.43 96.15 115.5

Chow [23] 28.55 53.15 62.71 83.83 95.21 114.1

(45�, �45�, 45�) Present: TSDT 29.34 58.19 64.14 87.67 107.38 110.6

Present: CPT 28.50 55.11 60.94 84.25 103.2 106.7

Chow [23] 28.38 54.65 60.45 83.65 102.0 105.6
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Table 9 gives the frequency parameters of plates with four edges simply supported, and
Table 10 with edges full clamped. Table 11 contains the results of plates with two opposite edges
simply supported and the other two fully clamped. In Tables 9 and 10, the present frequencies by
CPT agree very well with those given by Chow et al. [23] and Leissa [24]. Even the third order
theory also gives reasonable results though they are a slightly larger than CPT. If the thickness of
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Table 11

Natural frequencies parameters b of laminated square plates (BC: SCSC) (h ¼ 0:06; h=a ¼ 0:006)

Ply angle Theory Modes

1 2 3 4 5 6

(0�, 0�, 0�) TSDT 21.08 47.73 49.64 72.05 89.25 96.97

CPT 20.48 46.04 47.15 70.12 84.54 95.85

(15�, �15�, 15�) TSDT 21.42 46.78 51.04 72.63 91.01 95.04

CPT 20.85 45.56 48.14 70.66 86.47 94.00

(30�, �30�, 30�) TSDT 22.35 45.31 54.09 73.93 90.07 96.85

CPT 21.84 44.42 51.03 71.89 88.96 92.82

(45�, �45�, 45�) TSDT 23.63 43.84 58.36 74.82 85.04 106.01

CPT 23.15 43.07 55.44 72.78 83.90 102.26

(0�, �90�, 0�) TSDT 21.30 47.49 50.47 72.40 91.04 96.15

CPT 20.71 46.91 46.93 70.49 86.45 95.00

Table 12

Natural frequencies parameters b of laminated square plates (BC: SSSS) (h ¼ 3; h=a ¼ 0:3)

Ply angle Theory Modes

1 2 3 4 5 6

(0�, 0�, 0�) TSDT 11.71 22.13 25.38 32.58 35.79 40.89

CPT 14.16 38.03 48.18 49.11 64.55 73.01

(15�, �15�, 15�) TSDT 11.84 22.38 25.29 32.74 36.13 40.56

CPT 14.37 37.54 47.93 51.03 65.39 74.67

(30�, �30�, 30�) TSDT 12.10 22.97 25.03 33.07 37.06 39.66

CPT 14.80 30.65 36.44 48.34 54.91 65.47

(45�, �45�, 45�) TSDT 12.24 23.36 24.80 33.24 38.20 38.55

CPT 15.02 35.75 48.65 59.08 61.04 77.19

(0�, 90�, 0�) TSDT 11.73 22.27 25.37 32.64 35.95 40.89

CPT 14.16 28.88 37.72 48.18 50.12 65.10
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the laminate increases from 0.06 to 3, i.e., h=a ¼ 0:3 now, simulations are conducted again for this
thick plate with four edges simply supported, and the results are shown in Table 12. It can be
apparently seen that CPT greatly overpredicts the natural frequencies for thick laminates,
especially for the higher modes.
It should be mentioned that, since the thickness-to-side ratios of the laminates used are

generally larger than 0.005, no shear locking is encountered in the above examples [6]. For
laminates thinner than the limit, special techniques should be applied to avoid such issue
especially when using thick plate theory to analyze very thin plates. The matching fields approach
developed by Kanok-Nukulchai et al. [25] can be directly applied to the EFG formulations. This
method is very effective and a complete absence of shear locking can be realized, which can be
readily introduced to our formulations.

5. Conclusions

A mesh-free method has been developed for static and natural frequency analysis of thin and
thick laminated composite plates. Field variables are represented by a set of properly scattered
nodes and no requirement for element connectivity is satisfied. The formulation is based on the
third order shear deformation theory and variational principle. The higher order theory can give
more accurate results than classical or first order shear deformation theory and no shear
correction factor is needed. Essential boundary conditions are imposed by a penalty technique. It
performs with higher efficiency than Lagrange multipliers and orthogonal transformation
method. Several numerical examples are presented for laminates with different side-to-thickness
ratios, material coefficients, boundary conditions or ply angles. Solutions by the three commonly
used laminate theories are given and compared. They are also compared with the analytical and
the FEM results available from literatures and very good agreements are achieved, which
illustrate the convergence and efficiency of the present method.
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